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SUMMARY 

This final report described the ASSERT project "Detection and Classification of Synthetic 

Aperture Radar Targets" associated with the URI Automatic Target Recognition (ATR) 

project sponsored by DARPA. The main goal of this ASSERT project together with the 

URI-ATR project is to develop detection and classification algorithms for automatic target 

recognition. For the ASSERT project, we have focused on the use of Bayesian 

probabilistic reasoning approach to fuse multiple target feature data for the purpose of 

target classification. We also developed Bayesian network learning algorithms to 

automatically construct the Bayesian network model. 

In this project, there were two graduate students and one undergraduate students 

participated in the technical work. Of whom, two of them have received M.S. degrees and 

one of them is continuing his Ph.D. degree. This project directly or indirectly supported 

the publications of eight technical papers, two Master thesis, one Ph.D. thesis, and one 

technical report. 

The view, opinions and/or findings contained in this report are those of the author(s) and 
should not be construed as an official Department of the Army position, policy, or 
decision, unless so designated by other documentation. 



1. Introduction 

To succeed on the battlefield, it is very important to have an accurate picture of the 

current tactical picture of the situation. Modern sensor technology such as SAR has vastly 

improved the quantity and quality of the raw information on which tactical intelligence is 

based. SAR signatures contain coherent noise and have many unknown parameters such 

as amplitude, target spatial position and target orientation. The SAR clutter statistics are 

at least somewhat unknown and the signal is nonstationary. Our research focus is to build 

on our development of new detection and classification algorithms for SAR target data. 

The major goal of this research was to develop Bayesian Network algorithms appropriate 

for SAR ATD/R and to demonstrate the performance of these algorithms. 

Problem - A high performance SAR target detection and classification system will make 

use of multiple features and algorithms. The system requires an approach for combining 

feature and algorithm output information to make intermediate and final decisions about 

the presence and identities of targets. 

Goal - Develop Bayesiän Network and other algorithms appropriate for the SAR ATR 

problem that can handle non-Gaussian features optimally. Demonstrate this algorithm 

against the SAR ATR problem. 

Approach & Objectives - We have worked on the problem of target discrimination and 

classification using a Bayesian Network whose input is a collection of target features. 

These target features include the features of the Lincoln Laboratory discriminator. We are 

have also examined other applicable approaches such as multi-polarization fusion as well 

as multi-resolution fusion using wavelet. 

2. Technical Approach 

The objectives of the current research in ATR are to determine techniques for 

understanding the nature and special features of a SAR image and use those to develop 

specific identification techniques for classification. Particularly, we are interested in using 

the Bayesian network technology to improve ATR performance. 



During the past few years, Bayesian networks have received much attention as an efficient 

way of reasoning under uncertainty. Such networks provide a probabilistic model of the 

problem by means of graphs. The nodes correspond to the variables of interest, the states 

in a node can be either discrete-valued or continuous-valued. The arcs, usually given in 

terms of conditional probabilities, represent the probabilistic relationship between nodes. 

The networks as a whole can be used to represent various complicated models such as 

target and sensor models. 

Once a Bayesian network has been used to represent the model of a problem, the inference 

problem is to determine the a posterior probability distribution of the state given the 

observed evidence. Many techniques have been developed for performing Bayesian 

network inference. These include methods based on graph-theoretic implementations of 

Bayes rule and marginalization, methods based on message passing and clustering, and 

other approximate methods based on simulation. 

2.1 Bayesian Networks Representation and Algorithms 

The Bayesian network technology is a set of modeling (representation) techniques for 

encoding large-scale systems with inter-dependent uncertain elements into well-structured 

probability spaces, coupled with a set of inference techniques to obtain a posterior 

probabilistic assessments given available data. As a new technology, the Bayesian 

network has been shown to be both computationally more tractable and more easily 

understood than its predecessor technology. These advantages are achieved primarily 

through one technical innovation, the representation of conditional independence 

relationships. Such relationships limit the information used in an assessment or decision to 

that which is directly relevant and therefore improve both the efficiency of the 

representation and the inference process. 

Bayesian networks provide a flexible representation for complex models, and efficient 

inference algorithms. A Bayesian network is an acyclic directed graph in which each node 

in the graph is a random variable.   The nodes in the graph collectively satisfy a certain 



Markov Property, i.e., the predecessors of a node "separate" it from the nodes preceding 

those predecessors. In a Bayesian network, the existence of an arc between two nodes 

indicates a potential stochastic dependence between the two random variables represented 

by the two nodes. 

In addition to the convenient and flexible representation, a major benefit of using Bayesian 

networks is the existence of many powerful probabilistic inference algorithms developed in 

the past few years. In ATR, the goal of inference is to update beliefs in particular target 

classification in the light of the current state of information and new evidence about a 

target. The updated beliefs are known as posteriors, while the state of information before 

the evidence is known as priors. Since the nodes of a network are its most basic unit, it is 

often desired to know the posterior distribution for each node in the graph. Many 

algorithms are designed to handle this particular query. They include the distributed 

algorithm, the influence diagram algorithm, the evidence potential algorithm, and the 

symbolic probabilistic inference (SPI) algorithm. 

2.2 Learning Bayesian Networks from Data 

For target recognition, a Bayesian network can be constructed either by expert knowledge 

or learned from the training database. Bayesian methods for learning networks from data 

take prior knowledge and combine it with data to produce one or more Bayesian 

networks. The philosophy of Bayesian learning methods, in principle, is based on a so 

called score function which is proportional to the posterior probability p(Bs|D) of a 

network structure Bs given database D. Generally, the score function is derived according 

to a number of assumptions on the underlined probabilistic model. A Bayesian structure 

Bs that maximizes the score function is considered as the most possible structure 

generating the database. 

During past years, several methods have been developed for learning Bayesian networks 

from a given database. Some of these algorithms, due to their inherent nature, are 

computational intensive, and others which employing a greedy search heuristic can not 



guarantee to converge to the right network, even if the sample size is sufficiently large. 

Our research focus partially on developing efficient methods for learning Bayesian 

networks. A number of attributes about a Bayesian network and learning metric are 

identified. Based on these properties, we developed new learning algorithms which can be 

shown to be computationally efficient and guarantee the resulting network converging to a 

right network given a sufficiently large sample size. 

3. Accomplishments and Issues 

(A)      Major Accomplishments of the Project 

• Convert Xpatch multi-polarization, multi-frequency synthetic SAR data for four 

targets into image chips and wrote MATLAB code to display the images. A total of 

3600 images for each target are created. 

• Develop multi-polarimetric fusion algorithm for SAR target classification [1,5]. 

• Conduct research on useful target features to use in our Bayes network algorithm for 

target discremination and classification [2]. 

• Develop and implement Bayesian Network inference algorithms for generic networks 

[7]. 

• Develop and test a wavelet-based feature identification and fusion algorithm [3]. 

• Test the Bayesnet algorithms against the real feature data provided by Lincoln Lab. 

and obtain very good performance [2,6]. 

• Developed learning algorithms to construct Bayesnet from data automatically [4,8]. 



(B) Project Issues 

Since the parent project (DARPA, URI-ATR) was re-directed and extended (without 
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for discrimination. Ms. Ellen Vann performed her research under the direction of Dr. K. 
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Abstract—The problem of target classification using Synthetic Aperture Radar (SAR) polarizations is 
considered from a Bayesian decision point of view. This problem is analogous to the multi-sensor problem. We 
investigate the optimum design of a data fusion structure given that each classifier makes a target classification 
decision for each polarimetric channel. Though the optimal structure is difficult to implement without complete 
statistical information, we show that significant performance gains can be made even without a perfect model. 
First, we analyze the problem from an optimal classification point of view using a simple classification example 
by outlining the relationship between classification and fusion. Then, we demonstrate the performance 
improvement on real SAR data by fusing the decisions from a Gram Schmidt image classifier for each 
polarization. 

Radar target classification 
Feature fusion 

Automatic target recognition Synthetic aperture radar 

1. INTRODUCTION 

There has been a strong interest in employing 
multiple sensors for surveillance detection and recogni- 
tion for a number of years. Some of the motivating 
factors for this interest are: increased target illumina- 
tion, increased coverage, and increased information for 
recognition. For military applications combining several 
sensors or multiple looks of the same sensor is an 
effective method for increasing recognition performance 
while providing strength for resisting environmental 
effects and countermeasures. The approach we outline 
offers advantages that can be extended to many 
applications in multisensor surveillance. We have 
chosen to demonstrate on an application that is 
particularly challenging and not fully explored, i.e. the 
fusing of multi-polarimetric classification decisions 
from a Synthetic Aperture Radar (SAR) sensor. 

In this paper a two-level decision problem is outlined. 
The first level is the single source classification solution. 
The second level is where a fusing focal point receives 
each decision, where each decision is made individually 
and independent of the others. We analyze this from an 
optimality criterion and assume that the sources transmit 
their decision instead of raw data. The optimal decision 
fusion test is outlined and demonstrated with several 
examples. Instead of using a binary decision alone in the 
fusion process, we also utilize the value of the decision 
statistic for maximum information usage. As a result, we 

*   Author  to whom  correspondence  should  be  addressed. 
E-mail: kchang@gmu.edu. 

show that the classification performance can signifi- 
cantly improve a single source performance. Examples 
for the Gaussian case are provided and the implications 
for more realistic non-Gaussian sensor data are 
discussed. 

The approach we developed offers many advantages 
for multiple sensor surveillance applications. The main 
advantage is the algorithm design and implementation, 
where each sensor classifier can be designed and 
optimized independent of the others. In fact, we 
demonstrate our approach with a particularly challen- 
ging fully polarimetric SAR example where the 
polarimetric channels are inherently more correlated 
than the sources from independent sensors would be. 

This work is closely related to the distributed multiple 
sensor detection problem which has been reported in 
references (1-4). Tenney and Sandell(1) developed a 
theory for obtaining the distributed Bayesian detection 
rules. They derived the decision rules for the individual 
detectors that are coupled with information from the 
other sensors. This decision process is very difficult to 
perform when the relationship among sensor data is 
unknown. Chair and Varshney'2' presented an optimum 
fusion structure given that the detectors were indepen- 
dently designed. The solution was then used for a 
Neyman-Pearson(3> test. Surprisingly, this type of fusion 
construction has not been applied to the problem of 
multi-polarimetric channel SAR imagery. The outline of 
this paper wili first cover fusion and single source 
(single polarization, sensors, etc.) preliminaries; then the 
fusion algorithm will be demonstrated on the two-class 
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Gaussian classification problem; and finally the fusion 
paradigm will be demonstrated on fully polarimetric 
SAR data in conjunction with a Gram Schmidt image 
feature selection method. 

2. PRELIMINARIES 

There are two major options for decision making with 
multiple sources. The first option provides complete 
sensor information to a centralized processor. This is 
sometimes referred to as feature level fusion because all 
the feature information is transmitted to the fusion 
center for a combined decision. The second option is to 
have a decentralized, decision-level fusion. That is, 
some or all of the signal processing is performed at each 
individual source and only local decisions are used for 
fusion. 

The second option is more attractive for many 
applications due to the fact that in the first option the 
likelihood functions require knowledge of the joint 
feature distribution among sensors, p(x \ Wj,Sj), where 
Wj is the :'th class, Sj is the;th sensor and x represents the 
feature. This is difficult to obtain even for similar 
sensors, because the detection thresholds at individual 
detectors are usually coupled, i.e. they are not 
independent. Also, the second option is more desirable 
due to its cost, survivability, and bandwidth considera- 
tions. Nevertheless, the trade-off of the decision-level 
simplicity is a loss in optimality if the data is not or 
cannot be uncoupled. 

In this paper, we consider the problem of making a 
decision between two hypotheses. A number of N 
sensors receive observations and independently 
implement a local1 test. Let «,- designate the decision 
of the sensor, having taken into account all the 
observations available to this sensor at the time of the 
decision. Every sensor transmits its decision to the 
fusion center, so that the fusion center has all N 
decisions available for processing at the time of the 
decision making. 

Before proceeding with the fusion, we first consider 
the single sensor problem. To minimize the average 
probability of error^, we should select the class that 
maximizes the a posterior probability P(vr, I x). In other 
word.v. for the multi-category case, we minimize the 
error rate: 

Decide >v, if P{w, : x) > Pyw, | x) for all; ^ i.    (1) 

Nov.. representing the classifier in terms of the 
discriminant functions g,{x), any of the following 
choices can be derived'4' giving identical classification 
results, but some can be simpler to understand or to 
compute than others: 

g,(x) = P(w,\x) (2) 

'in our examples, local class parameters (feature distribu- 
tions i are estimated using training data. 

^Theoretical optimality can only be achieved when all class 
parameter distributions are known. 

KM = 
p(x I Wj)P(w,) 

gi{x)=p(x\Wi)P(wi) (4) 

(5) g,(x) = \ogp(x\Wi)\ogP(w,) 

where P(v»,) are the class prior probabilities. 
While the two-category case is just a special instance 

of the discriminant function, it can be written in terms of 
a single function. The following is particularly con- 
venient and will be used throughout the paper: 

g.{x) = log 
p(x W,) + >ogf

("° 
P(X\W2) "/»(H'j)' 

(6) 

3. Data fusion 

The data fusion problem can be viewed as an m- 
hypothesis problem with individual source decisions 
being the observations. The first fusion rule we will 
discuss was given by Chair and Varshney<2> who showed 
the Bayesian optimum rule as a weighted sum of local 
decisions. The weights being functions of local false 
alarm rates and probabilities of detection. Each detec- 
tion is assumed to be statistically independent and each 
detector makes a binary decision where u„ i=l,.. .,n 

-1,   if Ho is declared 
+ 1,   if H] is declared 

After processing the observations locally the decisions, 
«,-, are transmitted to the fusion processor. The structure 
of this fusion rule is derived using the discriminant 
function discussed earlier equation (2), 

P(H, | u) 
g{u) = log 

P(H0 | u) 

PD, ,      Pi   ,   T-P"    ,   Vl       * 
(7) 

where 5. is the set of all ;' such that u,=-i-l, 5_ is the 
set of all i such that u,-=-l, PF, and PD, are false 
alarm rates and probabilities of detections of each local 
sensor, and Pi and P0 are the a priori probabilities of the 
two hypotheses. In the case where all the sensors are 
similar and operate at the same error probability level, 
i.e. PF, = PF and PD, = PD for every sensor, equa- 
tion (6) is particularly easy to analyze because the 
decision variable has a binomial distribution that is 
distributed k out of N decisions for favoring a 
hypothesis. Hence, the fusion center probability of 
errors, are Pf and P'D 

.•=[71 V      ' 
(8) 

where \T] indicates the smallest integer exceeding T, 
the decision threshold of k. 
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Fig. 1. Information fusion approaches compared. 

Thomopoulos et al.(3) obtained similar results using 
the N-P criterion in addition to showing improved 
performance by transmitting a single confidence bit 
along with the hard decision. We follow basically the 
latter approach, but do not restrict the fusion rule to a 
single confidence bit. Lee and Chao<5) observed that by 
using a 3-bit fusion paradigm the detection performance 
of the system was nearly optimal (i.e. the performance 
of an optimum centralized system). The binary decision 
process certainly implies an information loss, but is used 
for distributed sensor problems where the communica- 
tion channel is an issue. For our application we are not 
hindered by the communication channel. Specifically, 
we assume that the decision statistic as well as the 
decision threshold of each local detector are given. We 
investigate two fusion algorithms based on this assump- 
tion. The first method is the MAP rule introduced in 
equation (1) as a classifier, which applies equally well 
as a fusion algorithm, i.e.: 

Decide w,- if />(*»'.• I u) > P(H'' I u) for dl J ^ '" ^ 

Naturally, equation (9) is the desired implementation 
because it provides an optimal3 solution. However, in 
general, we may not be able to accurately estimate the 
feature distribution functions. Therefore, the second 
method is a heuristic approach that directly extends the 
optimal binary approach introduced by Varshney 
[equation (7)]. The fusion algorithm is the same but 
the decision region is expanded to include the full 
threshold range: 

^0 A, ™ Ao '        r< 

where A, is the set of all i such that {g{{x) > T,} and 

'Again, optimality can only be achieved when all feature 
distributions are known. 

with Ti being the individual source threshold for 
partitioning the decision regions, and are the pro- 
babilities defined by the Cumulated Probability Func- 
tions (CDFs) for the each decision statistic, e.g. 
p* = P(itj > g\{x) \wt). This is simply an extension 
of equation (6) to include more than binary decision 
information. In practice, the CDFs will be quantized and 
estimated from training on the individual sensor's 
classifier error probabilities, which is the same for 
equation (9), but the advantage here is if the estimates 
are not ideal, then the added information from passing 
the decision partitions can provide some strength against 
environmental uncertainties. In a distributed scenario 
the weighting can be computed at each sensor and 
transmitted to the fusion center where they will be 
summed and compared to the decision threshold. 

To demonstrate a simple example we consider a 
system of three sensors. N=3, where the observation of 
each sensor is distributed normally as N(0,\) for H0 and 
N(l,l) for Hy. We compare the performance with the 
best centralized scheme, which utilizes raw data, not 
decisions, from the different sensors. Figure 1 displays 
the single sensor performance, the optimal binary fusion 
[equation (7)], and the MAP fusion. 

Up to this point we have looked at the design of a 
decision-level fusion scheme. The present analysis can 
be extended in many directions. Equation (7) is certainly 
not difficult to implement, since it only processes a 
single hard bit decision. Let us examine the extra 
difficulty in implementing equations (9) and (10) using 
the full range of decision statistics from training. This is 
not the typical difficulty associated with the classical 
methods that attempt to assimilate the likelihood ratio 
solution because the probability distributions for each 
hypothesis must be defined. In the next section we apply 
the decentralized scheme to fuse the returns of a fully 
polarimetric SAR classifier. With three linear polariza- 
tions which are known to have low correlation, the gain 
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is shown to be considerable. First, we introduce the 
classification procedure that will be used for each 
polarization and then we discuss the fusion methods that 
operate on each classified decision. 

3.1. Description of the classifier and fusion 
implementation 

A simplified block diagram of a complete multi-stage 
ATR system is shown in Fig. 2. The first stage locates 
regions of interest that contain "target-like" features. 
The goal of this stage is to rapidly sift through the sensor 
imagery to make quick and computationally efficient 
decisions while still keeping the false alarm rate at a 
reasonable level. Although the first stage is still an 
active research problem, this paper focuses on the latter 
two stages (target classification and fusion) where the 
burden of the final decision making process lies. For the 
classifier we use a signal subspace technique popular- 
ized in communications to get target features where 
each signal is defined by a separate basis function in an 
orthonormal set. If this set can be described, then the 
optimum classifier easily follows, hence the minimum 
probability of error. One method of determining a set of 
orthonormal basis functions from a signal set is by using 
the Gram-Schmidt orthonormalization procedure. This 
is similar to several orthogonal methods such as the 
Karhunen-Loeve expansion. The Gram-Schmidt basis 
functions offer a reduced yet complete signal set. For 
this preliminary study, we use a target set having an 
angular coverage of approximately 68f. The target 
images are comprised of 32x32 pixel Lincoln Labor- 
atory's millimeter wave SAR sensor data in the spotlight 
mode. The images are separated by one degree azimuth 
increments; thus, we have 64 images of each target type. 
We use a subset for designing the classifier. The 
classifier is designed by processing a target set through 
an orthonormalization Gram-Schmidt analysis to deter- 
mine a subset that best accounts for the characteristics 
of all the images within the target space. Let the design 
images be denoted by vectors Xx, X2,. .., XA-. The 
residuals of each image are combined into a matrix 
formed from the vectors as 

X = {XUX2, ,XN] (11) 

The Gram-Schmidt decomposition process requires that 
we choose a subset of images that provides the best 
representation of the target set. We refer to this subset of 

images as the Gram-Schmidt (GS) set. The GS 
algorithm is described in many linear algebra text- 
books'6'. In our case an orthonormal set Q is produced 
by the algorithm from X to make up the components of 
the newly reconstructed design set Y, such that: 

n 

(12) 

where N is the rank of Q. 
A subset consisting of N images per target is selected 

for the classifier design. For the 68 target chips, a design 
chip was selected every other degree. Figure 3 shows a 
transformation example for the third GS-element image, 
the corresponding basis image Q3 (third element of a GS 
set of eight), and Y3 = Q\+Qi+Qi. Visually, we can see 
how the combined v

3 is nearly a perfect reconstruction 
of the original image X3. 

The classifier operates on the unknown data using the 
GS set as follows. A test image X, is projected onto the 
N dimensional space spanned by the GS set. The 
components of the projection are calculated as follows: 

e,-= (*,-*)• If (13) 
where X, is the residual test image. This test will 
determine if there is enough energy contained in the test 
image to fall within one of the target classes. The scalar 
components are placed into an N dimensional feature 
vector 

e, = [ei.e2,...,ew] (14) 

The max(©,) for i=\....J<l is the distance decision 
measure corresponding to the best projection onto the 
GS-set. Hence, if the GS-set completely characterizes 
the target set then all of the target images should project 
onto one of the N vectors completely. Also, this 
procedure was tested against a "cultural" clutter chip 
set in the same manner. Referring to Fig. 2, these 
chips were passed through a stage 1 prescreener 
developed by Lincoln laboratory-'7' These consist of 
100 challenging false alarms. Fig. 4 shows each single 
channel HH, HV, and VV performance of the classifier 
operating against all the 100 false alarm chips and 
the 68 target chips. Larger GS-set's were tested with 
improved performance, but the goal was to retain a 
reasonably small filter set. Also, other researchers have 
reported algorithm performance on this data set ', e.g. 
an eigen-image approach, a quadratic distance correla- 
tion classifier, and a shift invariant 2D pattern matcher. 

FINDS ROI 
AND REJECTS 

CLUTTER FAI-SP 
ALARMS 

REJECTS 
MAN-MADE 
DISCRETES 

IMPROVE 
TARGET 

DISCRIMINATION 

Fig. 2. Block diagram of Automatic Target Recognition (ATR) system. 
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10 

Fig. 3. GS orthogonal composition example. 

Our algorithm reported very similar performance for a Nevertheless, by combining the classification deci- 
single channel classifier." sions using the rules such as equations (9) and (10), 

further refining of classification performance can be 
 —  obtained. In our next experiment, we demonstrate this 

«All four algorithms reported similar performance wittar.one combining ^ ^ classifier decisions from each 
or two false alarms. There was not enough target chips to draw J                 t>       ........         ,      . 
conclusive confidence. polanzaüon into the heunstic fusion rule. A previous 
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0.02 0.04 0.06 0.06 0.1 
false alarm probability 

0.12 0.14 

Fig. 4. Heuristic fusion using Gaussian estimate 

0.02 0.04 0.06 0.03 0.1 
false alatr probab,!:ty 

0.12 0.14 

Fig. 5. MAP fusion using empirical estimate. 

Table !. Minimum average probability of errors. 

Bayes error 

HH 6.287c 
HV 4.009r 

VV 2.507r 

Fusior. 1.50Tc 

analysis'8' determined the polarizations to be marginally 
correlated, which indicated the possibility for a decision 
levei fusion success. Each polarization channel was 
classified bv the GS classifier to determine: first, a 

minimum probability of error threshold and secondly, to 
estimate the CDFs by using a Gaussian approximation 
from the classifier decisions, as are required by the 
weighting functions [equation (10)]. Figure 4 displays 
the improved performance resulting from fusing the 
polarization decisions, and Table 1 shows their mini- 
mum average probability of errors . By choosing a 
larger GS set the performance improved, but we desired 

'Average of missed detection probability and false alarm 
probability 
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a less than perfect classifier to fully demonstrate the 
fusion benefit. 

In the second experiment, instead of using the 
Gaussian approximation for the distribution, we formed 
an empirical distribution from the histogram. In this 
case the MAP fusion performed significantly better as 
indicated in Fig. 5. 

4. CONCLUSION 

We have studied a two-level decision system in which 
the local decision statistics and their performance 
characteristics are given. Instead of using a binary 
decision alone in the fusion process we utilize the value 
of the decision statistic for maximum information usage. 
As a result, we show by example that the classification 
performance can significantly improve a single source 
performance. Also, we developed practical implementa- 
tions to improve the binary fusion strategy. The 
approach we developed offers many advantages for 
multiple sensor surveillance applications. The main 
advantage is the algorithm design and implementation, 
where each local classifier can be designed and 
optimized independent of the others. We demonstrated 
our approach with a particularly challenging fully 
polarimetric SAR example where the polarimetric 

channels are inherently more correlated than the sources 
from independent sensors. 
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Abstract. The problem of target classification with high-resolution, fully 
polarimetric, synthetic aperture radar (SAR) imagery is considered. We 
propose a framework of using a Bayesian network for feature fusion to 
deal with the difficult problem of SAR target classification. One difficult 
problem in SAR feature identification and fusion for target classification 
is that the features identified may not be independent and that it is not 
easy to find the "right" fusion rule to combine them. The Bayesian net- 
work model when constructed properly can explicitly represent the con- 
ditional independence and dependence between various features and 
therefore provide a sound and natural framework for feature fusion. This 
paper summarizes our recent work in SAR target recognition using a 
feature-based Bayesian inference approach. The approach works on the 
selected features which are chosen so that the separability of the original 
data are well maintained for later classification. Once the original data 
are mapped into feature space, the probabilistic model between features 
and the target is estimated and represented by a Bayesian network, 
which is then used to calculate the probabilities that a target belongs to 
one of the given classes based on the observed features. A comparison 
between the above technique and the traditional statistical approaches 
such as nearest mean and Fisher pairwise is illustrated based upon 
performance on a fully polarimetric ISAR (inverse SAR) image data set. 
Note that although the feature set used in the paper is obtained from the 
same sensor, the concepts of feature selection and Bayesian network 
formulation discussed in the paper are not restricted to this case only. 
They can be applied for multisensor feature-level fusion as well. 
© 1996 Society of Photo-Optical Instrumentation Engineers. 
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1    Introduction 

The objective of an automatic target recognition (ATR) sys- 
tem is to detect and recognize targets from sensor data. One 
of the important components of an ATR system is its clas- 
sifier. The function of the classifier is to categorize input 
measurements that represent detected targets according to 
target type. The classifier output corresponding to each in- 
put is an estimate of correct category label, based on the 
observable characteristics of the input. 

In general, a feature-based classifier consists of two ma- 
jor parts, a feature selection and a classification mechanism. 
For the purpose of target classification, the features selected 
do not necessarily have physical meaning. The only goal in 
designing features is to preserve class discriminant infor- 
mation of the data while ignoring information that is irrel- 
evant to the discrimination task. Once a feature is identi- 
fied, it will define a transformation to map input 
measurements into feature space, which usually has a much 
lower dimension than that of the input space. This will 
greatly simplify the classification problem. 

Research was supported by ARPA under Contract No. N66OO1-93-C-6010. 

A number of attributes that are present in ISAR images 
can be exploited to discriminate between targets and clutter 
false alarms. They are size, shape, signal strength, polari- 
metric properties, spatial distribution of reflected signal, 
and so on. However, only a few of them can be used to 
discriminate among classes of targets. It is very difficult to 
develop discrimination features for exploiting these at- 
tributes in any optimal fashion. Furthermore, the features 
identified may not be independent and it is not easy to find 
the "right" fusion rule. In fact, past experimental results1 

showed that adding features does not necessarily improve 
performance if they are not handled correctly. In this study, 
in the first stage, we examined up to twelve features against 
the data; some were studied before,1 and others are new. 
Out of the twelve features, we then selected the best dis- 
crimination features for classification. The main idea in this 
stage is to select the most useful information or processed 
results, while ignoring the irrelevant or bad ones. Although 
the feature set used in the paper is computed from the data 
of the same sensor, the concepts of feature selection and 
decision making discussed here are not restricted to this 
case only. 
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In the second stage, a Bayesian network is used for clas- 
sification. A Bayesian network is a directed, acyclic graph 
in which the nodes represent random variables, and the arcs 
between the nodes represent probabilistic dependence be- 
tween the variables. The Bayesian network model when 
constructed properly can explicitly represent the condi- 
tional independence and dependence between various fea- 
tures and therefore provide a sound and natural framework 
for feature fusion. Much attention has been drawn to this 
technology in the past few years and it has been success- 
fully applied both to tasks of assessment under uncertainty 
and tasks of decision-making under uncertainty.2"4 Re- 
cently it has also been applied to multisource intelligence 
fusion.5 In this paper, for feature-level fusion, we first iden- 
tify the network topology for various target parameters 
such as class and orientation and sensor data features. In- 
stead of working directly on the input measurements, the 
transformed data on the chosen feature spaces are used .as 
input. With the selected topology, we then learn (estimate) 
the probabilistic relationship between various variables in 
the Bayesian network. The conditional probability that a 
target belongs to a class given observed features is then 
computed based on a probabilistic inference algorithm us- 
ing the network. Finally, the target is assigned to the class 
with the highest probability. Note that the idea proposed 
here is general and can be applied to multisensor domain 
directly. In fact, the idea of applying a Bayesian network to 
multisensor fusion has become more and more popular in 
the fusion community.6 

This paper is organized as follows: Section 2 describes 
target sets and radar image data, Sec. 3 introduces the net- 
work algorithm and the classification process. Sec. 4 pre- 
sents the performance results, and finally, Sec. 5 contains 
some concluding remarks. 

2   Data Description 
The database used for this study was obtained from MIT's 
Lincoln Laboratory; it consists of four representative tar- 
gets: a Dodge van, a Chevrolet Camaro, a Dodge pickup 
truck, and an International Harvester bulldozer. Each of the 
four targets was put on a platform, and the millimeter-wave 
radar image data collected using a 35-GHz normal fre- 
quency at a fixed 5.5-deg depression angle while the plat- 
form turned over a complete 360-deg azimuth. These in- 
verse synthetic aperture radar (ISAR) images are  1-ft. 

Feature Selection Training Data 

Testing Data 

Bayesaet Model 
Learning 

1 ? 
T             ? 

 ► 
Bayesian Network 

Inference 
Feature Mapping  ►- Decision 

Fig. 2 Feature-based classifier with a Bayesian network. 

range-processed with full polarizations, namely, horizontal 
transmit, horizontal receive (HH); horizontal transmit, ver- 
tical receive (HV); and vertical transmit, vertical receive 
(VV). The images of these vehicles are available at 0.04- 
deg azimuth intervals and each is associated with a viewing 
angle. The original image of the vehicles has the size of 
32X20 pixels. Figure 1 shows an example of four target 
images using single-channel HH at a 0.4-deg azimuth. 

The fully polarimetric ISAR data were first filtered by a 
polarimetric whitening filter (PWF),7 and then normalized 
and compressed by a window slicing technique to a 15X9 
dimension.8 In this study, 5280 processed images were 
picked up from the database for each target. It should be 
mentioned that the targets look confusing from different 
angles. In particular, an image for a target at one angle may 
look like the image of another target at the same or a dif- 
ferent angle, while some images from adjacent angles for 
the same target may look much different. This made the 
classification task very difficult. 

3   Feature-Based Classification Procedure 
Our feature-based classifier is composed of the following 
stages. As shown in Fig. 2, the observed measurement is 
first transformed into feature space based on preselected 
features. Then the transformed data are input into the Baye- 
sian network for probabilistic inference. The result is a set 
of estimated conditional probabilities that the observed tar- 
get is from one of the classes given the observed features. 
Finally, the decision-making procedure simply compares 
these estimated conditional probabilities, and the observed 
target is assigned to the class with the highest conditional 
probability. Note that the feature selection and Bayesian 
network model learning modules are based on the training 
data and are done a priori off-line. 

The most difficult part to build into this classifier is fea- 
ture selection. Once features are chosen, the second step is 
to learn the probabilistic models between features and the 
targets and represent the model by a Bayesian network. For 
simplicity, we have assumed a simple two-level network 
topology where the observed features are assumed to be 
conditionally independent given the target class and image 
azimuth angle* (see Fig. 3). Given the network topology, 
the first task is to estimate the conditional probabilities of 
the observed features given the target parameters. These 

Fig. 1  ISAR images of an HH channel for four targets at 0.4 azimuth 
with a 1-ft. x 1-ft. resolution. 

Note that the observed features are not conditionally independent given 
only the target class. 
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Fig. 3 A probabilistic model between features and target states. 

estimated conditional probability distributions are used to 
describe the variable relationships in the Bayesian network. 
In the rest of this section, we will describe feature selection, 
Bayesian network modeling and decision making in detail. 

3.1    Feature Selection 

As mentioned before, the useful features here are those that 
preserve class discriminant information on the data while 
ignoring information that is irrelevant to the discrimination 
task. Since, at present, no method exists for developing 
discrimination features in any optimal fashion, one way is 
to test all the proposed features on the data set to see how 
well they can separate the targets of different classes. The 
good features, which have a better ability to separate dif- 
ferent target classes, are maintained for the further use of 
classification, and the poor ones are discarded. 

In this study, a total of twelve features were examined, 
of which three (standard deviation, fractal dimension, and 
weighted-rank fill ratio) were developed by MIT's Lincoln 
Laboratory to discriminate targets from nature-clutter false 
alarms in their ATR system,9 and the rest are new features. 
Some features are contrast-based, and the other spatial- 
distribution related. They are 

(i) The standard deviation (SD) feature is a measure of 
the fluctuation in intensity in an image. It is computed from 
the typical estimator for the standard deviation by using the 
power (expressed in decibels) of all the pixels in an image. 
If the radar image in power is denoted by P(r,a), then the 
log standard deviation a can be estimated as: 

o~= 
S2-S]/N\m 

N-l 

where 

S, = 2 lOlogio/H/vz), 

and 

S2=2 [101ogI0P(r,a)]2. 

(1) 

(2) 

(3) 

N is the total number of pixels in the image, which is 9x 15 
= 135. 

(ii) The fractal dimension (FD) feature provides a mea- 
sure of the spatial distribution of the brightest scatterers in 
the images. To calculate the FD feature of an image, the 
first step is to convert the image to a binary one. To do so. 

the K brightest pixels in the image are selected and their 
values are converted to 1, while the rest of the pixel values 
are converted to 0. Then the fractal dimension can be esti- 
mated as: 

dim= 
logA^-logMj    logM|-logM2 

log 1-log 2 log: (4) 

where A/, is the number of 1-pixel-by-l-pixel boxes 
needed to cover the image, and M2 is the number of 
2-pixel-by-2-pixel boxes needed to cover the image. Obvi- 
ously, M{ = K. 

(iii) The weighted-rank fill ratio (WRFR) feature mea- 
sures the percentage of the total energy contained in the 
brightest scatterers of an image. Using the notation of Eq. 
(2), this feature is defined as follows: 

^k brightest pixels"(r>g) 

^all pixels^(r>a) 
(5) 

(iv) The counting (CNT) feature is obtained by counting 
the number of pixels in the image that exceed a specific 
threshold, then dividing by the total number of pixels of the 
image. 

(v)-(xii) The following eight features are designed to 
measure the spatial distribution of the brightest pixels in the 
images. First we convert the image to binary by using am- 
plitude thresholding, in which all pixel values exceeding a 
specified threshold are converted to 1, and the remaining 
pixel values are converted to 0. Assuming the converted 
binary image is denoted as B(i,j), then these features are 
defined as: 

1 
MX=T?2 2 iXB(iJ), 

15 

Mr=Tr2 2 JXBVJ), 

15 

4X=TT-T2 2 (i-Mx)2XB(i,j), 

1   9 I5 

s2YY=fr-r.^ 2 (j-MY)2xB(ij), 
/V-l ,= i j=\ 

15 
5xy = T7rr2 2 (i-Mx)(j-MY)XB(iJ), 

/V     1 ,= i y-=i 

Wx=max{i:B(i,j)=l}-imn{i:B(i,j)=l}, 

Wy=max{J:B(i,j) = l}-min{J:B(iJ)=l}, 

WXY=WXXWY, 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

where N is the total number of pixels in the image. 
Features need to be evaluated since using similar fea- 

tures does not guarantee a better discrimination perfor- 
mance, and sometimes adding features can even degrade 
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performance. One way to evaluate whether a feature is 
good for discriminating targets of different classes is to test 
it on the training data set in a heuristic manner. The other 
way is to use the optimal feature set selection approach,10 

which uses a Bhattacharrya upper bound" on the probabil- 
ity of classification error to determine which subset of any 
/ features of the available L features has the lowest upper 
bound. It can be seen in Sec. 4 that this latter approach is an 
effective way to select features and its performance is very 
close to what we obtained using an "optimal manually cho- 
sen" feature set. 

3.2   Probabilistic Modeling of a Bayesian Network 

Our objective is to recognize targets from the observed 
data. Bayesian networks show great promise for performing 
this function since they can be used to represent compli- 
cated probabilistic relationships among variables of inter- 
est. Furthermore, many efficient algorithms have been de- 
veloped for drawing inferences from the evidence.12-15 For 
the current Bayesian network model, let the class status of 
an observed target be a random variable X, and assume the 
target belongs to one and only one of K classes; then, ob- 
viously, X is a discrete random variable, and without loss of 
generality, we can assume it takes on a value 1,2,...,K (in 
our case K=4). In a radar image, an important factor that 
greatly affects the appearance of the target is the target 
orientation. Let 0 denote the azimuth angle when a target 
is imaged, which can have values from 0 to 360 deg. If we 
discretize the 360-deg space into M small sectors and each 
has an equal interval, © can be treated as a discrete random 
variable. Finally, based on a set of selected features, de- 
noted as random variables FlyF2,...,FL, discrete or con- 
tinuous, a simple two-level probabilistic model between 
features and target states (class and azimuth) can be ob- 
tained as in Fig. 3. 

As shown in Figure 3, each node represents a random 
variable, and each line indicates the conditional probabilis- 
tic relationship between the connected nodes. Note here 
that the network topology implicitly assumes that the ob- 
served features are conditionally independent given the tar- 
get class and orientation. However, in general, this is not 
the case, and a more complicated network topology is 
needed to model the problem. In a Bayesian network, the 
conditional probability distribution of a child given all of 
its parents is assumed to be given before any probabilistic 
reasoning can be drawn. In our case, this is to say that 
given target type X and radar azimuth angle 0, the feature 
F, is distributed with the known distribution P(F/|Z,0), 
Z=l,2,...,£. In reality, the conditional distributions 
P(F[\X,@) need to be elicited by expert knowledge or 
physical models or estimated with the training data. It 
should be mentioned that for some continuously distributed 
features, since their distributions are hardly close to any of 
the well-known parameterized probability distributions, 
they must be estimated with nonparametric methods. We 
will discuss this in more detail in the next section. 

With the Bayesian network, the class probabilities of 
observed targets can be computed with any probabilistic 
inference algorithm.12-15 Basically, the question becomes 
one of how to calculate the conditional probability that an 
observed target is from a class at an azimuth angle given 
the observed features, e.g., P(X,®\F{ ,F2,...,FL). For the 

current simplified model, since the features F\,F2,...,FL 

are conditionally independent given X and 0, it can be 
shown that the required conditional probability can be ob- 
tained as:+ 

P(X,0|F, ,F2,...,FJ = - n P(F,\X,Q), (14) 

where C is a normalizing constant. If there are K classes of 
targets and M sectors of angles, based on Eq. (14), we can 
obtain a total of KX.M probability estimations. These are 
then used to make a decision. 

3.3   Decision Making 

In this step, the observed target is assigned to an appropri- 
ate class. What we obtained from Eq. (14) is a set of KXM 
probabilities, e.g., how likely an observed target is from 
class k and at azimuth sector m, k=l.2,...,K, and 
m- l,2,...,Af. To make a decision, there are two basic de- 
cision rules. 

Decision rule 1. Among KXM estimations, find the one 
with the highest probability value, then assign the target to 
the class associated with this estimate. It can be seen that, 
at the time the target class is determined, so can the target 
azimuth angle. However, this may not be necessary, and 
hence we have the second decision rule. 

Decision      rule      2.      Instead      of      estimating 
F(X,0|F,,F2 FL) Eq.   (14),   we   estimate 
P(X\Ft ,F2,...,FL). This can be obtained by the following 
equation: 

P(X|F,,F2,...,Ft) = S P(X,e\Fi,F2,...FL) 
0 

1 
= pH P(F,\x,e). (15) 

From Eq. (15), we can obtain K probability estimates. 
Again, we choose the one with the highest value, then as- 
sign the target to the class associated with this estimate. 

When making a probabilistic inference, an interesting 
consideration is to treat the radar azimuth angle as known. 
This may happen if the radar azimuth angle at which the 
target is imaged can be determined by other sources of 
information. If this is the case, namely the radar azimuth 
angle is known to be in the m'th sector, the conditional 
probability that the target is from a specific class given the 
observed features and &=m can be obtained using the fol- 
lowing equation: 

1   L 

P(X\Fl,F2,...,FL,Q = m)=-U P(Fl\X,e = m),   (16) 
C /=i 

where C is a normalization constant. Again, the decision 
making is based on K calculated probability estimates. 

'Again, in general, the network is more complicated and an efficient algo- 
rithm such as SPI [16] can be used to compute the conditional probability 
distributions. 
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Table 1 Averaged correct classification rates (ACCR) in % using OLPARS. 

Optimal 
feature set 

Nearest mean classifier Fisher pairwise classifier 

weight training testing training testing 

all twelve E 39.7 25.0 86.2 68.3 
features var. 66.8 66.2 rej. 20 rej. 830 

cov. 80.2 64.2 

1,3,6,7,12 E 38.3 25.0 83.8 72.4 
var. 66.0 67.9 rej. 20 rej. 44 
cov. 81.5 76.0 

1,3,6,7 E 71.7 71.0 81.9 82.0 
var. 66.9 67.1 rej. 17 rej. 49 

cov. 80.4 80.2 

1,3,6 E 69.1 67.8 78.4 78.4 

var. 69.0 68.5 rej. 26 rej. 26 

cov. 76.7 76.9 

1,3 E 63.1 62.9 72.8 72.2 

var. 65.0 65.0 rej. 59 rej. 141 

cov. 72.4 72.1 

4   Performance Evaluation 

The data set used for this study is first randomly and uni- 
formly split into two data sets, the training data set 
(1728X4) and the testing data set (3552X4). Using the 
training data set, the conditional probability distributions 
P(Fi\X,@) are first estimated. They are then used to define 
the Bayesian network and later to calculate conditional 
probabilities P(X,0|Fi ,F2,...,Ft) for classification. The 
testing data set is input to the system to examine the clas- 
sification performance, and the results are reported in terms 
of the averaged correct classification rate (ACCR), which is 
defined as the ratio of the number of correctly classified 
observations to the total number of observations in the test- 
ing data set. 

4.1    Estimation of Conditional Probability 
Distributions 

In this approach, the conditional probability distributions 
are estimated by a smoothing kernel approach, which is the 
most thoroughly developed approach in literature. Assum- 
ing we have K classes of targets (K=4 in our problem), L 
features, and the angle space is decomposed into M sectors, 
there will be a total of KXLXM distribution functions to 
be estimated. For the /'th feature F;, fc'th class, and m'th 
sector of angles, P(F/|X=fc,@ = /n) is estimated by using 
only that image data from the fc'th class of target and m'th 
sector of angles. The data are first transformed based on the 
feature F,. If we consider FJ ,FJ ,...,F" as «-transformed 
observations based on the feature F,, and they are from the 
/t'th class and m'th sector of angles, the kernel estimate has 
the form 

P(F/|X,e)=-2 k(F,-Fb, n ,= i 
(17) 

where k{.) is a probability density function symmetric 

about the origin. Here we use a Gaussian density with vari- 
ance a2, which is the only parameter. The parameter should 
be chosen so that the ACCR is maximized. 

4.2   Classification Results 

In this section, for the purpose of comparison, we first 
present some test results by using traditional classifiers— 
nearest mean and Fisher pairwise. We then show some test 
results to illustrate the key issues discussed in previous sec- 
tions. The first part of the results (Table 1) is obtained by 
means of a software package called OLPARS (On-Line 
Pattern Analysis and Recognition System).10 The system 
provides users with a convenient tool to realize a variety of 
traditional pattern recognition methods, especially optimal 
feature set selection, as mentioned in the previous section. 
The traditional classifiers such as nearest mean, Fisher pair- 
wise and so on can also be designed and evaluated easily. 

In Table 1, the left-most column refers to the optimal 
feature set selected in terms of the Bhattacharrya upper 
bound. The number of features in the feature set should be 
given in order to do the feature selection. For example, if 
we decide to use only two features, OLPARS reports that 
the best feature set is {1,3}, i.e., the first feature SD and the 
third feature WRFR as defined in Sec. 3.1. Corresponding 
to each of the optimal feature sets, Table 1 presents the 
classification results using the nearest mean and Fisher 
pairwise classifiers for both the training and testing data 
sets (note: the classifier parameters are estimated by the 
training data set only). In the table, "E," "var," and "cov." 
represent the different distance measures, Euclidean, 
weighted by a diagonal variance matrix, and weighted by a 
covariance matrix, respectively, and "rej." refers to rejec- 
tion. As can be seen from the table, the feature set {1,3,6,7} 
has the overall best performance. 
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Fig.4 AGCRvs. 1/o-for{1,3,6,11}{1,3,6,7},and{1,2,3}, M=48, and 
using decision rule 2. 

The second part of the results is obtained using feature- 
based classification with a Bayesian network. Figure 4 
shows a comparison of classification results among the op- 
timal feature sets, i.e., {1,3,6,7} selected by OLPARS, the 
manually selected set {1,3,6,11} and the previously pro- 
posed feature set {1,2,3}. The best ACCRs are 87.55% for 
{1,3,6,7} and 88.00% for {1,3,6,11} respectively, and the 
latter feature set performs slightly better than the former 
one. The two feature sets selected by the two different ap- 
proaches have only one differing feature. However, the op- 
timal feature selection approach is more computationally 
efficient. In Fig. 4, it also can be seen that the overall per- 
formance of feature sets {1,3,6,7} and {1,3,6,11} is much 
better than that of the previously proposed set {1,2,3}. 

Figure 5 gives a comparison between decision rules 1 
and 2. We find the second rule is better than the first. How- 
ever, using the first rule, the target azimuth angles can be 
predicted simultaneously. 

Figure 6 displays the impact of the number M when the 
azimuth angle space is partitioned. It can be seen that when 
M is increased, performance improves as well. 

The last result, shown in Fig. 7, is obtained using Eq. 16, 
assuming the radar azimuth angle can be determined from 
other information sources. In this model, performance is 
about 5% more accurate than that of decision rules 1 and 2. 
The best ACCR rate is 93.3%. This result is not surprising 
because more information is assumed to be available in this 
model. 

By comparing the two experimental results, it can be 
seen that the feature-based Bayesian net classifier performs 
noticeably better than the traditional classifiers—nearest 
mean and Fisher pairwise. 
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Fig. 6 The impact of M, using decision rule 2 and {1,3,6,11}. 

5   Conclusions 
In this paper, we applied the Bayesian network technology 
for feature-level fusion. Bayesian networks show great 
promise for multiattribute fusion since they can be used to 
represent complicated probabilistic relationships among 
variables of interest. We first identify the network topology 
for various target parameters such as class and orientation 
and sensor data features. The network topology explicitly 
represents the conditionally independent or dependent rela- 
tionships among various features. Instead of working di- 
rectly on the input measurements, the transformed data on 
the chosen feature spaces are used as input. With the se- 
lected topology, we then learn (estimate) the probabilistic 
relationship among various variables in the Bayesian net- 
work. The conditional probability that a target belongs to a 
class given observed features is then computed based on a 
probabilistic inference algorithm using the network. The 
network model used here is relatively simple. In a separate 
but related research,16 we also studied the problem of Baye- 
sian network construction using neural learning techniques 
where the network is more general and complicated. 

In the current approach, performance depends on a num- 
ber of factors, including selection of a set of workable fea- 
tures, choosing an appropriate probabilistic model to de- 
scribe the observations, handling approximation of the 
required conditional probability distributions, and so on. 
When classifying the SAR image, not only does the Baye- 
sian network model lead to a better performance than cer- 
tain types of traditional classifiers, for example, nearest 
mean and Fisher pairwise, it also possesses a certain degree 
of flexibility to handle other target parameters such as ori- 
entation. The orientation can be predicted at the time the 
target is classified. In the case where the orientation is 

82 
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Fig. 5 ACCR vs. 1/<r for decision rule 1 and 2, M=48, and using Fig. 7 ACCR vs. I/o-, assuming 0 is known, using {1,3,6,11}, and 
{1,3,6,11} M=48- 
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known, the classification accuracy is improved signifi- 
cantly. The decomposition of azimuth angle space and the 
parameter of the conditional probability distribution esti- 
mates are two main factors that could be adjusted to im- 
prove performance. 

Although the feature set used in the example is obtained 
from the same sensor, the concepts of feature selection and 
decision making discussed in the paper are not restricted to 
this case. The idea of applying a Bayesian network to 
feature-level fusion can also be applied to a multisensor 
domain directly. In fact, the idea of applying a Bayesian 
network to multisensor fusion has become more and more 
popular in the fusion community. The evaluation of our 
results demonstrates the usefulness of the proposed ap- 
proach. 
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ABSTRACT 

A hybrid automatic target recognition system is presented that exploits advances in two new fields in 
detection theory and signal analysis. The first is in the area of Universal Classification that offers asymptotic 
optimal solutions to non-Gaussian properties of signals and the second is in the field of multi-resolution 
analysis (MRA) that uses the automatic feature isolating properties of the wavelet transform. The Universal 
Classifier is used as the first stage of a hybrid ATR system that efficiently shifts through large quantities of 
imagery locating regions of interest that contain "target-like" features. The target chips of interest are then 
passed through the MRA to be classified at the final stage. Wavelets are adequate to the study of 
unpredictable signals with both low frequency components and sharp transitions. As a result, there has been 
recent interest in applying this new signal processing field to the target recognition problem. But few have 
combined the natural feature extraction capability of time-frequency methods in die classification stage. In 
this approach, we utilize the sub-space "crystals" from a specific decomposition and operate a classification 
strategy against each crystal of the transform. The complete ATR system is presented as well as performance 
examples using both real synthetic aperture radar (SAR) data and data generated using the Xpatch signature 
prediction code. 

Keywords: Synthetic Aperture Radar, Automatic Target Recognition, Universal Classification, Wavelet 
Multiresolution Analysis 

1. INTRODUCTION 

The problem concerned with recognition of targets in SAR imagery is an ongoing challenging research topic 
that is important for military applications. Some of the best performing algorithms reported in government 
and industry are related to simple template matching algorithms*1). This is surprising, since theoretically we 
know that a matched filter is optimal only under Gaussian class descriptions. One reason for such success is 
the efficient use of spatial information that is ignored by many applications. But one is led to believe that 
improvements in performance can be made. 

SAR image ^ PRFSORFF.N —► DWT CT.ASSTFY CLASSIFY 
frames TARGETS 

i r i ' i ' 
findROI 
and reject 

clutter FA's 

multiresolution 
analysis 

discriminate 
between 

target classes 

Fig, jre 1 Hybrid SAR AT RSysi cem 
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In this paper we introduce a unique hybrid ATR system (Figure 1). The first stage exploits recent 
developments in the theory of Universal Classificationtw). Prescreening SAR data requires the ability to 
examine large amounts of data without imposing numerous assumptions on the environment. Universal 
classification has been shown to be asymptotically optimum (in the amount of data) for classifying extremely 
general forms of data. The second stage transforms the regions of interest (ROI) from the pre-screener using 
a multi-resolution analysis (MRA) for the third and final classification stage. The classifier is a Gramm- 
Schmidt image classifier® which discriminates correlation properties of the transformed signal. The 
organization of the paper is as follows. In Section 2, we introduce the pre-screener and demonstrate on strip 
map SAR data. In Section 3, we discuss the motivation and approach behind the wavelet decomposition. In 
Section 4 we present the classifier and discuss some preliminary results using an Xpatch synthetic target data 
set and finally we summarize in Section 5. 

2. UNIVERSAL CLASSIFTER PRE-SCREENER 

The general theory underpinning this new branch of classification has been used in universal data 
compression to develop the Lemple-Ziv (LZ) compression algorithm (compress on UNIX machines). This 
highly robust algorithm has had an overwhelming impact on the field of data compression and storage. It is 
believed that the classification extensions of these approaches will have a similar practical impact on 
classification, and in particular on SAR classification. 

The basis for this class of algorithms is the utilization of statistical distance measures between the observed 
data and training data. Of course, this is similar to correlation based methods in Gaussian environments, but 
the universal methods incorporates the optimum non-linearities when the environment deviates from this 
simplistic assumption. 

Defining the classification problem as follows: 

H^.X-S^X) 
H2:X~S2(X) 

HN:X~SN(X) 

where we assume mat the class densities are unknown. In the absence of a precise statistical model for the 
dasses, we assume the existence of a sequence of training data from the source. We proceed by quantizing 
and' forming the types (empirical density estimates) A , Ps^,..., Ps  . 

Mathematically, this problem can be modeled as an M-ary hypothesis testing problem Our Universal 

Classifier implementation is a generalization from Covert, h(x) = min[dgL(P}C,Ps )\i = 12,...N. 

Where da (Px, PY) is the Kullback-Leibler distance between the types Px and Py. 

To demonstrate, we apply the classifier to the ^crimination between two clutter types (grass and trees) of 
Lincoln Laboratories ADTS 1-foot resolution SAR strip-map data. Because the classifier is asymptotically 
optimal the more information available either through higher resolution imagery or as in our example of 
exploiting the fully polarimetric images the error rate goes to zero (Figure 3). The first row indicates the 

output decision statistics from testing on several hundred square kilometers of clutter data for varying ROI 
operators 3x3,5x5,20x20. The second row is the respective receiver operating characterics. The last column 
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applies a Bayesian fusion rule across four1 polarizations that outperforms even the larger windowed 20x20 
discriminator. The straight line ROC indicates no errors given the sample size. 

3x3 Pixels 5x5 Pixels 20x20 Pixels 
5x5 using 4 
polarizations 

Figure 2. Universal Classification Performance using increasing 
spatial and polarization information 

A typical Constant False Alarm Rate (CFAR) detector, which is the typical pre-screening method, uses a 
single pixel test that operates no better than the first column case. Even though our experiment was 
performed on two classes of clutter, target classes have even stronger energy returns and would converge (to 
zero error) at a raster rate. If a target, however, is imbedded in clutter, for example trees, there exist no 
algorithm that can extract a target where no signature information exists. But this method, nevertheless, 
would do very well against partially obstructed or occluded targets. The performance would degrade in 
proportion to the loss of signature. This algorithm, in its present form is not designed to discriminate 
between targets, but extensions exist. One such method has been implemented by Warke and Orsak7 that 
has achieved very high classification rates to the face recognition problem. 

s- WAVF.LFT DECOMPOSITION 

In this section we investigate the second stage to our ATR system. What can wavelets contribute? By 
definition, wavelets should offer some potential because of their properties of providing good localization in 
both the spatial and frequency domains. There has been a number of recent attempts to exploit such benefits 
in the pre-screener or detection stages of the ATR problem*8- 9> and a few attempts to tackle the challenging 
later stages of an ATR process*10). This paper is strictly an attempt to exploit the attractive properties of 
wavelets, die authors are neither wavelet experts nor crusaders. Wavelets have generated a tremendous 
interest in both theoretical and applied areas. This is due to the interesting properties of a wavelet 
representation in terms of scale and location. In mathematics and engineering it has been known for some 
time that techniques based on Fourier series and Fourier transforms are not quite adequate for many 
problems. One of the assumptions is that the original time-domain function is periodic. As a result, the DFT 
has difficulty with functions that have transient components, i.e., components which are localized in time. 
This is particularly true with images that have frequent texture transitions. The other problem with 

i Analysis indicated that for this data, the cross polarization pairs woe not redundant 
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to ditterent scales can be thought to represent different resolution levels. F^iumg 

The discrete wavelet transform of a function/with respect to Iff is 

^--^E/w^V"-^)* a) m^i 

where/,^eL2(9J)3 and 5Tis the set of real numbers. In general for the DWT a = <, where m is an 
integer and a0 *1. The most common choice is to set a0 =2. For the translation parameter 

b-nb0a; where^ >0. ^ is called the mother wavelet and is assumed to be admissible for all 

functions, / € L1 (9t) if there exists real numbers, A > 0 and B < «,, ^ch ,hat 

With the surprising and fortunate recent discovery of many such Xff functions such that .4=25=/ by MallatC», 

Daubechiest«), and others; the discrete wavelet transform offers an orthonormal bases in Z,2(SR) In' 
pract.ee we use a discrete time version of (1) and implement it using a 2-dimensional version of the «pyramid 
scheme described by MaM. This is a fast 0(N) algorithm for an N-ptxel image. For choices o/^we 
mvesngated the boar, doublet, symmkt, and aifUt. Each mother wavelet is depicted in Figure 3. We found'that 
a^fcr with six taps usmg a three scale decomposition (decomposmon grid in Figurt 4) provided us wte 

«dude orthogonahty, compact support, neariy symmetrical, and vanishing rnoments. Evi^uTwe 
haven t ngproudy compared the performance of the wavelet filter options yet, we suspect that any AoS 
would have been satisfcctory (with the exception of the hoar). This * a reasonable 2£i tae7«u£ 

SrSinT0?       **T"i mt0TC^^ isolatingproperties of the transform We alsotcor^rat" 

ulTTe *Ä^7 ?*,"*? ^^ *** K *e bound»* "d *« PeriodicaUy^^i usmg the algonthm grven by Bnslawn». This is not necessary for the orthogonal wavelets but helped 
prevent the non-symmetncal ones from drifting in phase. waveiers, out neipeö 

2 No formal quantitative analysis has been examined as of yet 
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Figure 3. Investigated mother wavelets. 
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Figure 4. Wavelet scale decomposition 

4. GRAM-SCHMIDT TMAGF CLASSIFIER 

To exploit this feature information we implement our version of a classical correlation classifier<15> using a 
signal subspace technique popularized in communications ID get target features where each signal is defined 
by a separate basis function in an orthonormal set. If this set can be described, then the optimum classifier 
easily follows, hence the minimum probability of error. One method of determining a set of orthonormal 
basis functions from a signal set is by using the Gram-Schmidt procedure. 

Starting with a target set having an angular coverage of q degrees. We use a sub-set for designing the 
dassifier. The classifier is designed by processing a target set through a Gram-Schmidt analysis to determine 
a sub-set mat best accounts for the characteristics of all the images within the target sp^ce. 
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Let the design images be denoted by vectors Xj, X?,..., Xpj. The residuals of each image are 
combined into a matrix formed from the vectors. The decomposition process requires that we 
choose a subset of images that provides the best representation of the target set. We refer to this 
subset of images as the Gram-Schmidt (GS) set. The GS algorithm is described in many linear 
algebra textbooks(16). In our case, an orthonormal set Q is produced by the algorithm from the 
residuals to make up the components of the newly reconstructed design set Y, such mat 

where N is the rank of Q. 

A subset consisting of N images per target is selected for the classifier design. The classifier operates on the 
unknown data using die GS-set as follows. A test image Xt is projected onto the N-dimensional space 
spanned by the GS-set. 

The components of the projection are calculated as follows: 

where X   is the residual test image. This test will determine if there is enough energy contained in the test 

image to fall within one of die target classes. The .scalar components are placed into an N dimensional 
feature vector 

©» = [©l>©2'-"'©Ar] 

The max(0i) for / = l...Nis the distance decision measure corresponding to die best projection onto the 
GS-set Hence, if the GS-set completely characterizes the target set then all of the target images should 
project onto one of the N vectors completely. 

4.1 EXFKRTMBNTAL RESULTS 

For our experimental analysis of the discrete wavelet transform Gram-Schmidt classifier (DWTGS) we use a 
large data base provided by the Model Based Vision Laboratory of Wright Patterson Air Force Base. This 
data base was produced as an initial test set for the Moving and Stationary Target Recognition (MSTAR) 
program. Since it contains four target classes well refer to it as the MSTAR-4 data. We formed images 
using 141 phase histories in angle to obtain one foot cross range resolution and 101 frequencies 
(approximately 500MHz bandwidth) to produce one foot range resolution. No padding or use of powers of 
two are needed (with 128 frequencies, range resolution would be 0.78 feet, with 50% oversampling, each 
sample is now 0.66 feet, but resolution is still one foot). We use a 2D Harming window for 30dB sidelobe 
suppression. Our initial tests use two of the military objects contained in the MSTAR-4 data. Well refer to 
these objects as Tl and Ml. We restrict ourselves to 180 degrees in aspect and use a constant elevation angle 
of 30°. Using a GS set of 10 spanning 180 degrees (basically every 18°) we formed our filter set for each of 
the two classes. Using independent data we tested this against 180 test images spanning the same aspect 
coverage.Theconfusionmatrixresults are: 
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Tl Ml 
Tl 180 0 
Ml 6 174 

The average probability of correct classification is 98.3%. These preliminary results are very encouraging for 
this data which visually provides very litde discrimination potential (Figures 5 and 6). Further analysis is 
underway, however, to compare the performance with other classification strategies and to assess its relative 
performance. 

Figure 5. Aspect 0-4 degrees of object Tl 

Figure 6. Aspects 0-4 degrees of object Ml 

5. SUMMARY 

We have presented a novel hybrid ATR system using two new techniques in detection theory and signal 
analysis. The first part uses the so-called Universal Classifier that demonstrates a brand new class of 
powerful and efficient detectors that are able to significandy outperform traditional methods (in unknown 
environments). One of the standard approaches in detection analysis dealing with high dimensional 
problems is to break up a complicated signal into many simple pieces and study each of the pieces separately. 
This is the philosophy behind our use of wavelet based MRA The second part of our hybrid system uses 
wavelet based MRA for demonstrating a new way of extracting feature information for classification. We 
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classifier.   Successful experiments implementing these approaches were demonstrated using both real and 
synthetic SAR data. 
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ABSTRACT 

During past years, several methods have been developed for 
learning Bayesian networks from a given database. Some of 
these algorithms, due to their inherent nature, are 
computational intensive, and others which employing a 
greedy search heuristic can not guarantee to obtain an I-map 
(independency map) of the underlying distribution of the 
data, even if the sample size is sufficiently large. The focus 
of this paper is on developing efficient methods for learning 
Bayesian networks. A number of attributes about a Bayesian 
network and learning metric are identified. Based on these 
properties, new learning algorithms are developed which can 
be shown to be computationally efficient and guarantee the 
resulting network converging to a minimal I-map given a 
sufficiently large sample size. 

1. INTRODUCTION 

In recent years, research of Bayesian network technology has 
been mainly focused on two directions, Bayesian network 
inference algorithm and structure construction and refining. 
In aspect of structure construction, traditional AI researchers 
used expert knowledge to construct Bayesian networks. 
More recently, AI researchers and statisticians have begun to 
develop new methods for learning these networks. These 
methods combine prior knowledge with data to produce one 
or more Bayesian networks. The resulting networks can be 
used for inference or, in special cases, to infer causal 
relationships among variables. A Bayesian network structure 
when associated with a set of conditional probability 
distributions defines uniquely a joint probability distribution 
(jpdf) on the n domain variables. However, a given jpdf may 
have at most as many as n\ (minimal) Bayesian network 
representations. Hence, finding the simplest network 
representation (a network which has the least number of 
arcs) among these minimal network representations is 
considered NP-hard. 

When learning a Bayesian network from data, the 
computational complexity is a major concern. There are a 
number of learning algorithms relying on a so called 
conditional independence test. For example, in Srinivas's 
method [7], the recursive algorithm used for building a 
sparse Bayesian network of k+\  variables based on the 

existing network K of k variables is to find, for the k+ 1th 
variable x, a minimal subset Z in K such that x is 
conditionally independent of K-Z given Z. One way to do 
this is by generating all possible subsets of AT in increasing 
order of size until Z is found. Such exhaust search requires 
2* independence checks when adding the A+lth node. The 
total number of independence checks is approximately 0(2"). 
When the number of domain variables is large the algorithm 
is computationally intractable. Another learning algorithm, 
CONSTRUCTOR, developed by M. Fung et al. [4] is also 
suffering from the similar problem. 

The other category of methods to construct Bayesian 
networks from database is by defining a search metric (or 
score function) which is a function of the network structure 
and the database. Then a search strategy is employed to 
identify a network structure which has the maximum score 
among all possible network structures. A typical algorithm 
of such category is the Bayesian method (K2) developed by 
Cooper and Herskovits [3]. In the algorithm, they defined a 
score function, p(Bs£>), which is proportional to the posterior 
probability p(Bs\D). By giving a predefined node order, the 
problem of searching a network structure which maximizes 
the score function becomes to search a parent set for each 
node that maximizes the local score. Since a greedy method 
is used when searching the parent set for each node, the 
algorithm can not guarantee to find a network structure 
which has maximum score among all structures obeying the 
given node order. In addition, it can be shown that in general 
the algorithm can not guarantee to find any I-map1 [2]. 

This paper is organized as follows. In Section 2, we 
introduce notational conventions, definitions, and 
assumptions used in the remainder of the paper. In Section 
3, the new learning algorithms are presented which can be 
shown to be computationally efficient and guarantee to find a 
minimal I-map of the underlying distribution of the database 
when the sample size is sufficiently large. In section 4, we 
give the conclusion remarks and future work. 

A network topology guarantees that nodes found to be 
separated correspond to independent variables [6]. 



2. PRELIMINARIES 

Throughout the discussion, we consider a domain U of n 
discrete random variables (r.v.), xi,..., x„. Each variable has 
a finite number of values. The lower-case letters refer to 
r.v.'s, and upper-case letters refer to sets of r.v.'s. Let;? be a 
joint probability distribution over U. Let X, Y, and Z be 
disjoint subsets of U. We use p(X\Y) to represent the 
conditional probability distribution function (cpdf) for X, 
given all possible instantiations of Y. We say that X are 
conditionally independent of Y given Z, denoted as I(X,Z,Y), 
if p(X\ZY) =p(X\Z) (or equivalent^ p(X,Y\Z) = p(X\Z) p(Y\Z)) 
for all possible value assignments of X, Y, and Z. 

An observation or a sample over U is a value assignment to 
all variables in U. A database D of observations over U is a 
list of observations. In this paper, we assume that the 
observations in the database are independent of each other. 
Further more we assume that there are no observations with 
missing values in the database. 

Definition 1 Let Bs be a directed acyclic topological 
structure for the domain U and Bp is a set of specified 
conditional pdf p(xt \Tli), i=\,...,n, where IX is the parent 
set of Xi defined by Bs. Then a Bayesian network B is 
defined to be a pair (Bs, Bp). 

A Bayesian network structure Bs specifies for each node x, a 
parent set n,, i'=l, ..., n. Thus, we can write Bs = {ITi, ..., 
n„}. A Bayesian network for a domain U represents a jpdf 
over U. It can be shown [6] that a given Bayesian network 
(Bs,Bp) uniquely specifies a jpdfp ofU, where 

p(x1,-,x„) = nXxI|n,). (2.1) 

On the other hand, given a jpdf p on a domain U, we always 
can find a Bayesian network B = (Bs, Bp) defined on U such 
that (2.1) holds. Thus, B can be called a Bayesian network 
of the jpdf p. It is well known that a given jpdf may have 
many Bayesian network representations, that is, they all 
represent the given jpdf. An important property of a 
Bayesian network is its node ordering. A node ordering is a 
priority constraint such that if x, precedes xj in the ordering, 
then we do not allow structures in which there is an arc from 
Xj to xt. Now, let B = {Bs, Bp} be a Bayesian network of p 
with an order 0: i\, ii..., i„. Then it can be shown that 

P(Xik\Xil,~*ik-i) = P(Xik\Tlik),   for A =1,...,«.    (2.2) 

It follows that if B' = {Bs, Bp'} is another Bayesian network 
of p with the same order 0, then by (2.2) 

Pi\|IT4 ) = PiXik\Uik),   for k = 1,..., n.      (2.3) 

We can always identify a node order for a Bayesian network. 
Conversely, given a jpdf p and an arbitrary node ordering i\, 
h, ..., in, it can be shown that there must exist a Bayesian 
network which has the given order and represents p. In fact, 
based on the chain rule of probability, 

p(xw-,xn)=Y\p(xik\xh,-,xik   ). (2.4) 

The right hand side of (2.4) defines a Bayesian network afp 
which is fully connected. Note that a fully connected 
network carries no information about conditional 
independence assertions, so it is not very useful. In order to 
reveal as much conditional independence as possible, it is 
necessary to construct a Bayesian network which has no 
redundant arcs under the given node order. We introduce the 
following definitions: 

Definition 2 Let B = (Bs, Bp) is a Bayesian network of p 
with a given node order. B is called minimal, if any arc of 
Bs is removed, ihenp can not be represented by B for any Bp. 
A minimal Bayesian network structure is also called a 
minimal I-map. 

Most of Bayesian network learning algorithms are to find a 
minimal I-map. If a node order is specified, the learning 
procedure is reduced to find for each node its parent nodes 
from all candidate nodes which are precedent in order. 

3. LEARNING BAYESIAN NETWORKS 

Learning a Bayesian network from a database D of 
observations comprises two tasks: learning the network 
structure Bs, and after a proper network structure is 
identified, estimating the set of conditional probabilities Bs. 
In this paper, the focus is on developing efficient algorithms 
in learning network structures. Once Bs is obtained, Bp can 
be estimated from database statistically. 

A Conditional Independence Test (CI) Approach 

Some of the Bayesian network learning algorithms employ a 
so called conditional independence test (CI). The typical 
example include the algorithm developed by Srinivas [7] and 
the CONSTRCTOR by Fung [4]. 

Srinivas's method is designed to construct a sparse network. 
The algorithm begins from an empty network, and, 
recursively adds one node at each step to the existing 
network until all n nodes are included in the network. More 
specifically, let Xt denote the set of k nodes in the existing 
network at Mi step, then for each of n - k remained nodes, 
namely, x e U - Xk, identify its parent nodes TL. c Xk such 
ti\&tp(x\Xk) - p(x\Ylx). The node which has the least number 
of parents is chosen to be added to the existing network. At 
the first step, the algorithm needs to choose a root node 
based on either an expert prior knowledge or a random 
selection if no prior knowledge is available. To identify for a 
node its parent set at fcth step requires a total of 2k CI tests 
which is the total number of possible subset of Xk . Hence, 
the total number of CI tests needed for identifying a network 
is proportional to 2". 

The algorithm, CONSTRUCTOR, suffers from the same 
problem. In the algorithm, the idea is to find for each node x 
e U a Markov blanket Bx c U. The Markov blanket shields 



x from U-{x), namely, p( x | Bx ) = p{ x | £/ ), and is 
comprised by x"s parents, children, and child's parents. 
Based on the information provided by the Markov blankets 
for all nodes, a Bayesian network can then be constructed. 
Again, it is a nontrivial problem to identify B*'s since it needs 
2""1 tests for each node and a total of M2""' CI tests if an 
exhaust search is used. 

Both algorithms mentioned above are computationally 
intractable because of their search requirement. In the 
remaining of this section, we will focus on developing an 
efficient search method to identify the parent set or the 
Markov blanket for each node. The problem can be 
formulated as follows: let Vc U - {x}, the goal is to find a 
smallest subset IT* c Fsuch that 

p(x\Tlx) = p(x\V). (3.1) 

Using conditional independence symbol, (3.1) can be denoted 
as l(x, Tlx, V - Tlx), namely, x and V-Tlx are conditionally 
independent given E*. Before deriving our efficient 
algorithm, we introduce some useful properties of the 
conditional independence which can be found in [6]. 
Let X, Y, Z, W c U be mutually disjoint sets of variables. 
Then we have following properties: 

weak union        I(X, Z,WY)=> I(X, ZW, Y) & I(X, ZY, W), 
intersection        I(X, ZW, Y) & I(X, ZY, W) => I(X, Z, WY), 

where the intersection requires the probability distribution p 
be absolutely positive. In the follows we assume p is 
absolutely positive. Based on the properties, we then have 
the following theorem. 

Theorem 1 Let x e U, and V c U - {x} be a set of random 
variables. Then there exists a subset n c Fsuch that I(x, Yl, 
V-Yl) holds if and only if I(x, V-{y},y) holds for Vy s V- Yl. 

Proof: Necessity: for any y e V- Z, let Y = {y}, W = V- 
n - {y}, Z = n, and X = {x}. Then the necessity part follows 
obviously by the weak union property. 

Sufficiency: let V- Yl = {y\,y2, ...,yk). Now we have 

I(x, V-{yi},yJ     for V i = 1, 2,..., k. (3.2) 

LetX= {x}, 7= {y,}, W = {y2}. and Z = V- {yuy2}, then 
we have I(X, ZW, Y) and I(X, ZY, W). By the intersection 
property, we obtain I(X, Z, WY), which is 

/(x.V-ty,,^},^,,^}). 

Now let Y= iy\,y2}, W= fo}. andZ= V-{yuyxy$. Again 
using the intersection property, we obtain 

I(x, V-{yuy2,y3}, {y\,yi,yi} ). 

Repeating this procedure, eventually we obtain 

I(x, V-{yu ...,yk}, {yi, ...,yk} ), 

which is/(x, 11,7-11). || 

Theorem 2 Let x e U, and V c U - {x} be a set of random 
variables, Y = {y: I(x, V-{y},y)}, and Ylx = V-Y. Then we 

have I(x, Ylx,V- Ylx) holds. Furthermore, Ylx is the smallest 
conditioning set in the sense that if there is another n such 
that I(x, n, V - IT) holds, we must have LI* c EL 

Proof: Note Y = V - Tlx, then by the definition of Y and 
theorem 1, it follows that I(x, Tlx, V- Ylx) holds. The second 
part of theorem is proved as following: 

I(x,Ux, V-Ylx) and/(x,n, V-Yl) 
iff    (by theorem 1) 

I(x, V-{y},y) iorVye V- Tlx, and 
/(x, V-{y},y) forVjye V-U. 

iff I(x, V-{y},y) for Vy e (V- nx)u(F- n) = V- Tl.n U. 
By the definition of Y, we must have V - ILn lie Y, which 
implies IT, = F-T c TV, II Thus it follows that n, c EL || 

Theorem 2 provides us an efficient methods to identify the 
smallest conditioning set for a given variable. To search for 
a node x its parent set Tlx c V, what needs to do is for each y 
£ V to check if I(x, V -\y}, y) holds, that is if x and y are 
conditionally independent given V-{y}. If the answer is 
"yes", y must not belong to Ylx, and, if the answer is "no", y 
must belong to Ylx. Thus the number of CI tests required to 
identify parent set is equal to the size of V. Back to 
Srinivas's method, at kth step, we need only (n - k)k CI tests, 

and totally we only need ££:j k(n -1)« n3 16 CI tests. In 

CONSTRUCTOR, we only need n{n-X) CI tests. 

The other methods to construct Bayesian networks from 
database is by defining a search metric (or score function) 
which is a function of network structure Bs and the database 
D. A network structure Bs which has the maximum score 
among all possible network structures is identified. In the 
remaining of this section, we discuss two approaches, and 
develop an efficient search algorithm. 

A Minimum Description Length Approach (MDL) 

The MDL method is based on the minimum description 
length principle [1] which stems from coding theory. The 
goal of the method is to create a network structure that 
describes the database as accurately as possible with as few 
symbols as possible. 

Let U = {JCI, X2, ..., x„}, where each x, can take a value from 
{xa, xn, ..., Xiri}, r, >1, i =1, ..., n. Let DN be a database 
with N observations over U. Let Bs denote a network 
structure over U, and for each variable x,, let H be the set of 
parents of x, defined by Bs. Furthermore, for each II;, let w0 

denote the/th instantiation of n„y = 1, ..., qh qt > 0. Now, 
let Nyk be the number of observations in DN in which the 
variable x, has the value x,* and n, is instantiated as wy. 

Finally, let Ntj = ££=i Nijk .   Then the description length 

L(BS, DN) of the network structure Bs given the database DN 

is defined by 

L(Bs,DN) = logP(Bs)-NxH(Bs,DN)-±KlogN (3.3) 

whereK = ^qi(r,-\), and 



n   ?,- N, iß 
H(Bs,DN) = -£YZ-Z-\og 

i=\j=\k=\ N 

N, ijk 

NH 

The first term of (3.3) models the prior distribution on 
network structures. The second term represents the 
conditional entropy of the network structure Bs, and it is a 
non-negative quantity. In the third term, the factor K is the 
number of (independent) probabilities that have to be 
estimated from the database D for obtaining the probability 
tables Bp for the network structure Bs. With an increasing 
number of arcs, a network structure will be able to more 
accurately describe a jpdf which generates the database, so 
the entropy term -N x H(BS, DN) increases. However, the 
cost term 1/2 K logN decreases when more arcs are added. 
The network structure with the highest quality will balance 
both these terms, and has the highest score in (3.3). For a 
problem domain U with n variables, the number of possible 
network structures is huge, thus an exhaust search is 
computationally prohibited. An alternative way is to use a 
greedy search. Unfortunately, the greedy search can not find 
a global maximum, and for certain type of distributions that 
generates the database, it can not lead to a I-map no matter 
how large the database is [2]. 

To develop an efficient algorithm, we first investigate some 
properties of the MDL score. Let U be defined as before, 
and DN = {U\, Ui, ..., UN) be N independent samples of U. 
Let B - (Bs, Bp) be a Bayesian network with a parameter set 
Bp= {9yk} where &,jh=p(xi = xik | IT, = wv), i =1,...,n, j = 1, 
..., q>„ andk=l,..., rt. It can be shown that the posterior log 
likelihood of DN given B is: 

logp(DN\Bs,BP) = Z^gp(Uh\Bs,BP) 
A=l 

n   qt n   q. 

i=\j=\k=\ i=\j=\       k  - 

N< iß 

I*? 
log(^).(3.4) 

A simple fact associated with the posterior log likelihood is 
described in the following lemma. 

Lemma 1 Let DN = {Ut, U2, ..., UN} be N independent 
samples of U. Let B = (Bs, BP) and B' = (B's, B'P) be two 
Bayesian networks over U. If B and B represent the same 
joint distribution p over U, then 

\ogp(DN\Bs,BP) = \ogp(DN\Bs ,BP). 

Proof: Since B and B' represent the same joint distribution p 
of U, we have 
logp(DN\Bs,BP) = \ogp(DN\p) = logp(DN\B's,ffP).   || 

Now let us examine the right hand side of (3.4). The 
expression in (3.4) can be maximized with respect to 0s by 
using Shannon's inequality, that states Si a, log a, > Si a, log 
bi for all a,, 6, > 0 where Si a, = Si bt■■= 1, with the equal sign 
holds iff a, = 6,, V /'. Hence we have 

" q>       1 Nijk ,    N& 
\ogp(DN\Bs,BP)< 2 ZJVj, Z^log 

1=1 ;=1 i=l My "ij 

n   g,   r, 

= ZZSiog 
1=1j=\k=1 

(N„Y* "ijk 

\Uijj 
= log p{DN\Bs,BP),   (3.5) 

whereBp = {0ijk}  with  6ijk =Nijk /Ni}-, is the maximum 

likelihood estimator (MLE) of Bp with K degree of freedom, 
where K is defined as in (3.3). Note that the right hand side 
of inequality (3.5) is -Nx H(Bs, DN), SO the entropy term in 
MDL score is the posterior log likelihood of DN given Bs and 
the conditional probabilities which are estimated by relative 
frequencies from DN- 

Based on statistical theory of hypothesis testing [8, p. 381], if 
the probability distribution p represented by B is the true 
distribution that generates the sample DN, the log likelihood 

ratio -21ogp(DN\Bs,Bp)lp(DN\Bs,BP)will converge, as 

the sample size JV —► oo, to a chi squared with K degree of 
freedom. Hence we have the following lemma. 

Lemma 2 Let DN - {U\, Ui, ..., UN) be N independent 
samples of U with probability distribution p defined over U. 
Let B = (Bs, Bp) be a Bayesian network defined over U. 
Then if the joint probability distribution represented by B is 
identical to p, we have as N —>• oo, 

2(-NxH(Bs,DN)-logp(DN\Bs,BP))   ->   x\ 

in distribution, where x\ means a chi square distribution 

with K degree of freedom.      11 

The proof is simple because -NX.H(BS£)N)= logp(DN\Bs, BP ). 

When learning Bayesian network, it is desirable to find a 
minimal I-map of p. To attain this purpose, we need to 
identify some asymptotic properties associated with the MDL 
score. Combining Lemma 1 and Lemma 2, we have the 
following theorem. 

Theorem 3 Let DN = {Uu U2, ..., UN) be N independent 
samples   of   U   with   an   absolute   positive   probability 

distribution    p    over    U. Let     B's = {Tl{,—,TlJ„}, 

Bs = m,--,nc„} and Bs = {Ö, ,-,n„} be three network 

structures obeying the same node order, where  Bs  is a 

minimal I-map of p, B§ is a fully connected network 

structure, and Bs is obtained by deleting an arbitrary edge of 

Bg ■ Then for any large positive number M » 1, we have 

P(L(BS,DN)-L(BS;DN)>M)->1      asTV-»«, 

if the deleted edge does not belong to BJ
S, that is n/ c TI,, 

7=1,...,77. 

In order to prove the theorem, we need the following lemma, 

Lemma 3 Let {XN} and {YN} be random variable sequences 
which converge in distribution to random variable X and Y , 
respectively. Let {UN} be sequence that converge to minus 
infinity, then we have 



P(XN-YN<aN)-*0        asJV-»». 

Proof. For any Mi > 0, and Mi > 0, when N is sufficient 
large such that an < -Mi, we have 

{XN-YN<aN} = {XN<aN+YN} 

= ({XN<aN+YN}n{YN<M,W 

({XN<aN+YN}f]{YN>M]}) 

Q{XN<aN+Ml}\J{YN>M]} 

Q{XN<Ml-M2}[J{YN>M]} 

which implies 
P(XN -YN<aN)<P(XN <MX -M2)+P(YN>Ml) 

= FXN(Ml-M2) + l-FyN(Ml). 

where F denote the cumulated distribution function. Thus, 
lim P(XN -YN <aN)<Fx(M]-M2) + \-Fr (M, ). 

W-»oo 

Letting M2—► oo followed by Mi —> oo, we obtain 
\imP(XN-YN<aN)=Q. ||. 

Now we begin to prove Theorem 3. 

Proof (Theorem 3).  It is equivalent to show 

P(U.Bs,DN)-L(B%,DN)<M)->0     asJV->oo. 

The difference between two scores is 

R-NxH(Bs,DN)+NxH(Bc
s,DN)+±(Kc -K)\ogN, (3.6) 

where R = logP(BS)/P(5|) is a constant as N ->■ oo, 

* = It] *(»J -1), and tfc = ££, tf (,jc -1). Assume that 

Bs is obtained by deleting one of the parent nodes of x„ that 

is n, c Iff, and n; = IT}, V / * i. Since p is absolutely 

positive, when N is sufficient large, all possible 

instantiations of TlCj must occur, thus qf > <?,, and qcj = q<, 

V ; * i. Note that all r; = rj . We conclude K° - K > 0, and 

hence, the third term in (3.6) goes to infinity. 

On the other hand, since both B§ and Bs are super graphs of 

Bg, we can find BC
Pand BP such that Bc = (BC

S,BP) and 

B = (BS,BP) both represent p. Then by Lemma 2, as Af-xx>, 

Xw=2(-Afx//(£5,Dw)-log;KAv|£s,.B/>))   -»   *jfc > 

7W - 2(-iV x ff (2?f ,DW ) - log p(DN \BC
S ,BP ))   -»   %2    . 

Note that by Lemma 1, \og(DN\BS,BP) = \og(DN\BC
S,BP). 

We conclude 

P(UBS,DN)-UBI,DN)£M) 

= P(XN-YN<2M-2R-(Kc-K)\ogN)->0asN-*<x> 

where the limit in the last step follows the Lemma 3.       || 

Theorem 3 tells us when search a minimal I-map we can 
begin from a fully connected network structure, then delete 
one edge and examine the MDL score. If the deleted edge is 
not an edge in the minimal I-map, the score will increase 

with high probability. However a question arises: what 
would happen if the deleted edge is an edge in the minimal I- 
map. The following theorem will answer this question. 

Theorem 4 Let DN = {Uu U2, ..., UN} be N independent 
samples of U with a absolute positive probability distribution 

p over U. Let B'S = {Tl{ ,-,U]
n}, B% = {TI, ,-,115} and 

Bs = {II, ,• --,11,,} be three network structures obeying the 

same node order, where B!
s is a minimal I-map oip, Bc

s is 

a fully connected network structure, and Bs is obtained by 

deleting an arbitrary edge of £|. Then almost surely (a.s.) 

we have 

L(Bs,DN)-L(Bc
s,DN)^-cc,    asJV-*oo, 

if the deleted edge is an edge in B}
s, that is, 3 i such that 

n{ <z n;- cnf, and n j c n, = W} for vy* /. 
Proof: As discussed in the proof of Theorem 3, the third 

term in (3.6),]/2{K
c -K)\ogN ->• + oo, and the first term R 

is a constant. Now let us consider the behavior of the 
entropy term H(BS, DN). By the strong law of large numbers, 
we have that 

N& 

Ny 
->■ p(xt =xjk\TIi =wjJ)        asA^->oo  a.s. 

N. ijk 

N 
Then we have 

»p(xj = xjk,Uj = w„)       as N—>co. a.s. 

-H{BS,DN)+H(BC
P,DN)-+ a.s. 

* i 
S 2X*; =xik,Ui =yvij)\ogp{xi = xik\Ui=wiJ)- 
;=!*=] 

-Z 2>(*, = **.nf = ^)\ogP(xt = sain? = <). 
j=\k=\ 

By marginalization the above equation can be written as 

Z ZP(xi =xik^Cj=wl)^P{xi=xik\Ilc
j=wi(TU)) 

j=\k=\ 

-S I/te = *ft,n? =^)iog^, =xik\n< = w?o. 
7=14=1 

where w!0.(^ conforms to wfj. Again by Shannon's inequality, 

it can be shown the above expression is less than zero 
because Bs is not a I-map, and there are indexes j and k such 

that   p{xi=xik\U
c

j=w^u))*p{xi=xik\U
c

j=^).  Thus 

we conclude asN^><x, 

-NxH(Bs,DN) + NxH(Bc
P,DN) 

= N(-H(BS ,DN)+H(BC
P ,DN ))-*-«     a. s. 

Although the third term goes to infinity, because N term 
dominate logN term as N -» oo, the difference between two 
MDL scores will converge to minus infinity almost surely.   || 



Based on Theorem 3 and Theorem 4, we have the following 
algorithm. Given a database with N independent samples 
distributed with a absolutely positive joint pdf p, to construct 

a minimal I-map Bs ofp that obeys a node order, we begin 

from a fully connected network structure B$ that obeys the 

same node order.  Secondly, we examine all edges in B§ to 

determine which edge is in B!
s and which is not. To do so, 

we deleting one edge at a time in 2?! to generate a new 

network structure Bs . If the score difference between Bs and 

B§ is greater than zero, that is UBS,DN)-L{BC
S,DN)>Q, 

we believe with certain degree of confidence that the edge 

just deleted is not in B!
s due to Theorem 4, otherwise, it is 

in Bs due to Theorem 3.  Note that there are only n(n-l)/2 

Bs 's to be examined, and each one has only one edge 

difference from Bg.   Finally, those edges which make the 

score difference less than zero will be collected and comprise 
the minimal I-map. This algorithm is computationally 
efficient and guarantees to converge to the minimal I-map 
that obeys the given order provided that the sample size is 
sufficiently large. 

A Bayesian Approach (K2) 

As mentioned before, The, philosophy of Bayesian learning 
methods, in principle, is based on a so called score function 
which is proportional to the posterior probability P(BS\DN) of 
a' network structure Bs given database DN- A network 
structure Bs which maximizes the score function is 
considered to be the most likely structure generating the 
database. Cooper and Herskovits [3] used p(Bs, DN) as a 
score function, and based on a number of assumptions, they 
proved, for a discrete database DN, that 

p(Bs,DN)=cnn(}}
,
+r\vnNiß^ (3.7) 

where c is the prior probability, P(Bs), for each Bs, and r,, qt, 
Nyk, and Ny are defined as in MDL score. Bouckaert [3] 
investigated the difference between MDL score and Bayesian 
score, and concluded that 

L(Bs,DN) = \ogP(Bs,DN) + o(l) (3.8) 

where o(l) is with respect to N. That is as N -> oo, o(l) 
tends to a constant. However, the behavior when it tends to 
the limit depends on both Bs and DN- From formula (3.8), 
we can show that the algorithm developed for MDL score can 
also be used for the Bayesian score.   The only difference is 

that when examining if the deleted edge is in Bf, we use the 

log of Bayesian score. By slightly rewriting Theorem 3 and 
Theorem 4, it can be shown that the algorithm also converges 
to the nunimal I-map provided the sample size in the 
database is sufficiently large. In addition, the computational 
efficiency is the same as in MDL. 

4. CONCLUSIONS 

In this paper, a number of attributes about a Bayesian 
network and score functions are identified. A set of theorems 
is derived based on which we derive two categories of 
Bayesian network learning algorithms, one for conditional 
independent test, and the other for MDL score and Bayesian 
score. Throughout the derivation, we show that the new 
algorithms are considerably simple and computationally 
efficient, and guarantee to converge to a minimal I-map of 
the probability distribution which generates the database, if 
the sample size is sufficiently large. The algorithms 
developed in this paper need to be evaluated using a 
simulation and real data, particularly for a database with a 
finite sample size. Learning Bayesian network from database 
is a difficult task because there is a huge number of possible 
network structures to be considered. Although it is known 
that given any node order, there must exist a nunimal I-map 
of underlying distribution, an improperly-chosen node order 
may lead to a network which fails to reveal as much 
conditional independence as desired. Hence, to develop an 
algorithm that can, without relying on a prespecified node 
order, lead to a sparse I-map among all minimal I-map is an 
important future research direction. 
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